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Inertial and viscous effects on dynamic
contact angles
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(Received 15 November 1996 and in revised form 10 October 1997)

An investigation is made into the dynamics involved in the movement of the contact
line when a single liquid with an interface moves into a vacuum over a smooth solid
surface. In order to remove the stress singularity at the contact line, it is postulated
that slip between the liquid and the solid or some other mechanism occurs very
close to the contact line. It is assumed that the flow produced is inertia dominated
with the Reynolds number based on the slip length being very large. Following a
procedure similar to that used by Cox (1986) for the viscous-dominated situation
(in which the Reynolds number based on the macroscopic length scale was assumed
very small) using matched asymptotic expansions, we obtain the dependence of the
macroscopic dynamic contact angle on the contact line velocity over the solid surface
for small capillary number and small slip length to macroscopic lengthscale ratio.
These results for the inertia-dominated situation are then extended (at the lowest
order in capillary number) to an intermediate Reynolds number situation with the
Reynolds number based on the slip length being very small and that based on the
macroscopic lengthscale being very large.

1. Introduction
Consider a liquid in contact with a smooth solid surface with an interface which

intersects the solid surface at a contact line. If this contact line is constrained to
move across the solid surface with a speed U, it is known that the contact angle (i.e.
the angle between the interface and the solid surface at the contact line measured
through the liquid) increases or decreases as the magnitude of U increases according
to whether the liquid is advancing or receding (Dussan V. 1979). We consider here
the dynamics of such contact line movement and assume that on the side of the
interface away from the liquid there is a vacuum (or at least a fluid, such as the liquid
vapour, of sufficiently low viscosity and density that it plays no significant role in the
dynamics). It is the object of the present paper to predict how the contact angle will
vary with the contact line velocity U under such a situation by calculating the liquid
interface shape near the contact line due to the action of the stresses in the liquid
produced by the motion. Examples of contact line movement across a solid surface
occur with (a) the spreading of a liquid drop on a horizontal surface (Greenspan
1978; Hocking & Rivers 1982), (b) the movement of a drop down an inclined surface,
(c) the movement of a meniscus along a tube, (d) the movement of a solid object

† Professor Cox died before this paper was completed. This manuscript was prepared for
submission and publication, with some additional footnotes, by J. R. A. Pearson, 23 Chaucer Road,
Cambridge CB2 2EB, UK.
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such as a plate or a sphere through a liquid interface and (e) in printing, coating and
painting processes.

When the flow field is calculated in the neighbourhood of a moving contact line it is
found that for all contact angles other than 180◦ there is a non-integrable singularity
in the stress at the contact line resulting in a divergent integral for the drag force
on the solid boundary. In order to avoid this problem slip has been postulated to
occur between the liquid and solid surface at small distances of order s say, from
the contact line (Dussan V. 1976; Hocking 1977; Huh & Mason 1977b; Hocking &
Rivers 1982; Cox 1986). The following models for this slip have been used:

(i) Zero tangential stress at the solid surface at distances from the contact line
less than s and no slip for distances greater than s (Huh & Mason 1977b).

(ii) The difference in tangential velocity between liquid and solid (slip velocity) is
proportional to the local shear velocity gradient at the solid surface (Hocking 1977;
Huh & Mason 1977b; Lowndes 1980).

(iii) The slip velocity is algebraically dependent upon distance from the contact
line (Dussan V. 1976).

The slip models (i) and (ii) are considered in the present paper together with a
more general form of the slip model (ii), namely

(iv) The difference in tangential velocity between liquid and solid is proportional
to the local shear velocity gradient raised to the power of p (where p > 0).

Slip between liquid and solid is a convenient assumption to make in order to
get rid of the non-integrable stress singularity, but there are also other possibilities
for the removal of the singularity by taking into account non-continuum effects†,
non-Newtonian fluid effects and the elasticity of the solid. Hocking & Rivers (1982)
considered the spreading of a drop of very viscous liquid on a smooth horizontal
surface using singular perturbation expansion methods. This theory was then extended
to more general spreading situations by Cox (1986) who considered contact line
movement for a general geometry in which one fluid displaces a second fluid with
which the first is immiscible for the special situation in which the flow everywhere
is viscous dominated (and therefore satisfies the Stokes equations), which occurs if
the Reynolds number based on the macroscopic (experimental) lengthscale R is very
much smaller than unity. The flow field and the interface shape were found by making
a singular perturbation expansion in the capillary number Ca ≡ µU/σ (where U is a
characteristic velocity, µ the viscosity and σ the interfacial tension) and the ratio of
slip length s to macroscopic lengthscale R, ε = s/R where it was assumed that

Ca� 1, ε� 1. (1.1)

It was found that two regions of expansion were necessary if, as Ca→ 0, ε→ 0, we let
(Ca ln ε−1)→ 0, in which case the interface was almost planar, but that three regions
of expansion were necessary if, as Ca → 0, ε → 0, the quantity (Ca ln ε−1) was fixed
and of order unity. In this latter situation, the slope angle that the interface makes
with the solid surface can change by an amount of order unity. A macroscopic contact

† If molecular effects are to be taken into account, then steep gradients in fluid density arise in the
neighbourhood of interfaces and contact lines; in the case of moving contact lines, these interfaces
will not be at equilibrium in a thermodynamic sense. The width of these regions of rapid change
will be of the order of a few (3–10) molecules, though the distance from the contact line at which
significant disequilibrium arises may be much larger. The slip models (i)–(iv) above can be regarded
as coarse approximations relevant on length scales larger than a few nanometres; it is worth noting
that the standard concepts of interfacial and surface tension are analogous approximations for
equilibrium systems away from contact lines.
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angle was defined in terms of the asymptotic form of the macroscopic (experimental)
lengthscale of the slope angle that the interface makes with the solid surface as the
contact line is approached. Then from the form of the interface shape very close to the
contact line, an expression for the macroscopic contact angle was obtained in terms
of the contact line speed U and the microscopic contact angle defined as the angle
the liquid interface makes with the solid surface at distances from the contact line of
order of the slip lengthscale† s. This theory gives results which agree very well with
the experiments of Hoffman (1975) and of Hocking & Rivers (1982) if it is assumed
that the microscopic contact angle is a constant independent of the spreading velocity
U and possesses a value which depends only on the particular liquid and solid surface
being considered‡.

This theory of Cox (1986) for one fluid displacing a second immiscible fluid may
be used in the special case we are considering in the present paper with just a single
liquid (by letting the viscosity of the second fluid tend to zero) so long as the Reynolds
number based on the macroscopic lengthscale R is very much smaller than unity.

In the present paper we obtain first the relationship between the macroscopic
contact angle and contact line velocity for the situation of a single advancing liquid
(§§ 2–7) when the flow so produced is inertia dominated everywhere requiring that the
Reynolds number based on the slip length s be very large compared with unity. This
is done for the situation in which the conditions (1.1) are satisfied.

Then in §§ 8 and 9 the theory is extended to an advancing liquid for which the
situation is intermediate between the viscous situation (examined by Cox 1986) and the
inertial situation (examined in §§ 2–7) with again the conditions (1.1) being satisfied.
Thus results expressing the macroscopic contact angle in terms of contact line velocity
are obtained for an advancing liquid which covers the complete range of Reynolds
number (so long as (1.1) is satisfied).

2. General problem
For the spreading of a Newtonian liquid of viscosity µ and density ρ on a solid

surface, it will be assumed that the slip length s is much smaller than a characteristic
macroscopic lengthscale R so that

ε ≡ s

R
� 1 (2.1)

and also that the capillary number Ca is small so that

Ca ≡ µU
σ
� 1, (2.2)

where U is a characteristic velocity of the spreading process and σ the surface tension
of the liquid. This spreading liquid is assumed to move into a vacuum or to displace
an immiscible fluid of very small density and viscosity (so that the role of this second
fluid is negligible in the spreading process). The macroscopic Reynolds number Re of

† Clearly the notion of contact angle implies that the ‘continuum approximation’ involving
infinitely thin interfaces and smooth surfaces can be made. The distinction made above between
macroscopic and microscopic contact angles hence requires a large ratio in length between (each
pair of) the interface thickness, the slip length s and the flow scale R; it also implies that gradients
in the slope angle near the contact line are small enough for contact angles to be defined.
‡ This independence of U is a crucial one; it does not necessarily follow from thermodynamic

arguments (Shikhmurzaev 1997).
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the flow produced, defined as

Re ≡ UR

ν
, (2.3)

where ν = µ/ρ and ρ is a constant density, is taken to be much larger than ε−1 (i.e.
Re� ε−1 � 1) implying that we have an inertia-dominated flow (except in boundary
layers) even at the slip lengthscale s since then

εRe ≡ Us

ν
� 1. (2.4)

Furthermore, for simplicity, we shall consider only situations in which (a) the
spreading liquid is advancing (not receding) over the solid surface, (b) the contact line
is moving normal to its direction over the surface, (c) the solid surface is smooth and
essentially planar on lengthscales small compared with s (although it could possess
a curvature of order R−1). Also relative to suitably chosen coordinates (moving with
the contact line) we assume (d) the liquid motion is steady and (e) the solid surfaces
present, as well as the liquid interface, have zero normal velocity and hence only
possess tangential motion. This means that in the limit of εRe→∞, the liquid would
be at rest apart from flow within boundary layers on the solid surfaces†. However at
large but finite values of εRe, because of the flux of fluid into such boundary layers,
an inviscid‡ flow would be induced in the liquid exterior to these boundary layers.
Thus one might consider, for example, a thin flat solid plate moving steadily in its
own plane through a liquid interface into the liquid or the steady motion of a liquid
meniscus advancing along a uniform tube. Further assumptions to be made are that,
in the region of interest near a contact line, (f) there is no boundary layer separation,
(g) the boundary layer is laminar and (h) there is no inviscid flow (irrotational or
rotational) induced resulting from motion outside the region of interest (at distances
of order R from the contact line).

Whilst in §§ 3–6 the shape of the liquid interface is determined correct to order
Ca+1 for situations where the above assumptions apply, a discussion is given in § 7
of the effect of removing assumptions (a), (b) and (h). Then in § 8, the effect of the
replacement of condition (2.4) by

εRe� 1, Re� 1 (2.5)

(or 1 � Re � ε−1) is considered so that the flow is viscous dominated at the slip
lengthscale s but inertia dominated at the macroscopic lengthscale R. The results for
this situation, intermediate between the viscous-dominated flow of Cox (1986) and
the inertia-dominated flow, are then discussed in § 9.

3. Outer region
If the dimensional fluid velocity and pressure are u and p respectively at position r,

we define an outer region of expansion valid everywhere except close to the contact

† This restriction should perhaps be regarded as part of assumption (h); it is true that in the
limit εRe → ∞, the motion of the plate will not induce any flow, but it needs to be proved that
the only steady external flow is a rest state; even if this is the case, there is the issue of relating the
results that flow from this assumption to realistic flow fields involving moving interfaces.
‡ Perhaps this is better stated as ‘largely inviscid’, as implied by (3.3). As will be seen later, it is

the outer vorticity which is the key issue for the outer flow; an (irrotational) planar sink flow into
the contact line need not necessarily be ruled out at this point.
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Figure 1. The outer flow region, showing Cartesian and polar coordinates.

line using (overbarred) outer variables made dimensionless by R, U and ρ. Thus

r = r/R, u = u/U, p = p/(ρU2), (3.1)

so that in this outer region

Re−1(∇2
u) − ∇p = u · ∇u,
∇ · u = 0.

}
(3.2)

As mentioned in § 2, this outer region must be subdivided into a boundary layer
region (or regions) valid near solid boundaries and an ‘inviscid’ flow region valid
elsewhere where (3.2) is valid as written. Then if we expand the flow field u, p for
small Re−1 in the inviscid region as

u = u0 + . . . , p = p0 + . . . , (3.3)

we see from (3.2) that u0 , p0 satisfy the inviscid Euler equations

−∇p0 = u0 · ∇u0, ∇ · u0 = 0. (3.4)

Then by assumption (h) in § 2, we see that u0 is irrotational and must furthermore be
a zero flow by the assumption (e) in § 2, i.e.

u0 = 0, p0 = constant (= P0 say). (3.5)

Since, for matching purposes near the contact line, we shall later require only the
lowest-order asymptotic form of the flow and interface shape in this outer expansion
as we approach the contact line, we may take the solid surface locally near any given
point P on the contact line to be planar with the contact line being straight and
perpendicular to the direction of the solid surface motion (see assumption (e) in § 2).
Thus if we take local outer-region Cartesian coordinates (x, y, z) with origin at the
point P on the contact line with the z-axis normal to the planar surface and the
x-axis in the direction of the solid surface motion (relative to the interface), so that
the y-axis is directed along the contact line (see figure 1), then, by the assumption
(b) in § 2, the fluid velocity is two-dimensional with u = (u, 0, w) where u, w and p are
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functions only of x and z. Boundary layer (double overbarred) variables to be used
in the boundary layer region are then defined as

x = x, y = y, z = Re1/2z,

u = u, v = v, w = Re1/2w, p = p,

}
(3.6)

so that in these variables (with v = v = 0) the equations (3.2) become

Re−1 ∂
2u

∂x
2

+
∂2u

∂z
2
− ∂p

∂x
= u

∂u

∂x
+ w

∂u

∂z
,

Re−2 ∂
2w

∂x
2

+ Re−1 ∂
2w

∂z
2
− ∂p

∂z
= Re−1

(
u
∂w

∂x
+ w

∂w

∂z

)
,

∂u

∂x
+
∂w

∂z
= 0.


(3.7)

Then by expanding u, w and p for small Re−1 as

u = u0 + . . . , w = w0 + . . . , p = p0 + . . . , (3.8)

we see by substituting into (3.7) and by matching onto the known form of the inviscid
flow solution (3.3) and (3.5) that u0 and w0 satisfy the boundary layer equations

∂2u0

∂z
2

= u0

∂u0

∂x
+ w0

∂u0

∂z
,

∂u0

∂x
+
∂w0

∂z
= 0, (3.9)

with p0 = P0 everywhere. Also matching requires that

u0 → 0 as z → ∞. (3.10)

On the solid surface (z = 0), if we take the characteristic velocity U to be the
spreading velocity at the chosen point P , we see that the no-slip boundary condition
is

u0 = +1, w0 = 0 on z = 0 (x > 0). (3.11)

Such a steady boundary layer for x > 0, which starts at x = 0 for which we have unit
velocity at the wall and zero velocity parallel to the wall at large distances from the
wall, was studied by Sakiadis (1961) who showed that there must be a fluid inflow
into the boundary layer with

w0 ∼ − 1
2
α∗ x

−1/2
as z → ∞ (3.12)

where

α∗ = 1.616 05. (3.13)

By matching this onto the inviscid solution u, p we see from (3.6) that

w ∼ − 1
2
α∗x−1/2Re−1/2 as z → 0, (3.14)

so that the inviscid velocity u is of order Re−1/2 and the inviscid pressure p, by (3.2),
of order Re−1. Thus we write, for Re−1 → 0,

u = Re−1/2 u1 + . . . , p = Re−1 p1 + . . . , (3.15)

which, when substituted into (3.2), gives at order Re−1 the Euler equations

−∇p1 = u1 · ∇u1, ∇ · u1 = 0. (3.16)
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It therefore follows from assumption (h) in § 2 that u1 is irrotational so that

∇× u1 = 0, ∇ · u1 = 0, (3.17)

with p1 being determined by Bernoulli’s equation which may be written as

p+ 1
2
|u|2 = ∆P

or as

p1 + 1
2
|u1|2 = Re∆P (3.18)

where ∆P is a constant (or a hydrostatic pressure variation if gravity effects are
significant).

If n is normal distance (in the r-variables) from the liquid interface measured
positively into the liquid then the dimensional normal stress that the liquid exerts on
the interface is

−ρU2p+ 2µ
U

R

∂u

∂n
= ρU2

[
−p+ 2Re−1 ∂u

∂x

]
= ρU2

[
−Re−1p1 + O(Re−3/2)

]
.

The normal stress boundary condition at the liquid interface that this normal stress
be equal to σ times the interface curvature, may be written as

σκ

R
= ρU2(−Re−1p1) = ρU2(−∆P + 1

2
Re−1|u1|2), (3.19)

where κ = Rκ is the dimensionless interface curvature (with κ being interface curvature
defined as positive for centre of curvature on the side away from the liquid). This
boundary condition (3.19) may be written in the form

κ = −Ca p1 = −∆P
∗

+ 1
2
Ca|u1|2 (3.20)

where Ca is the capillary number defined by (2.2) and where

∆P
∗

=
ρU2R

σ
∆P (3.21)

is the pressure drop across the interface (made dimensionless by the pressure σ/R)
which would occur in the absence of fluid motion. If the Bond number B ≡ ρgR2/σ

is very small, ∆P
∗

may be taken as constant, whereas otherwise a hydrostatic pressure

variation should be included in ∆P
∗
. However even in this latter case, the effects of

hydrostatic pressure variation are negligible on the asymptotic solution which we are
considering here of approaching the contact line in this outer region.

In addition to the normal stress boundary condition (3.20) on the liquid interface
we also require zero normal velocity so that

n · u1 = 0 (3.22)

on the liquid interface (where n is a unit normal vector to that interface).
Since u1, p1 is two-dimensional (like u, p), we write u1 = (u1, 0, w1) where u1, w1 and p1

are functions only of x and z. Then, from (3.14), we see that

w1 = − 1
2
α∗x−1/2 on z = 0. (3.23)

Thus the inviscid flow velocity u1 satisfies (3.17) with the boundary conditions (3.20)
and (3.22) on the liquid interface and (3.23) on the solid surface. In order to solve for
u1 and the interface shape in the outer region (as the contact line is approached), we
set up a plane polar coordinate system (r, φ) in the (x, z)-plane of the outer inviscid
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region with origin at P with φ = 0 in the solid surface directed in the x-direction (see
figure 1).

Considering the flow u1, p1 and the interface shape as an expansion in the small
capillary number Ca (see (2.2)) we see that at order Ca0, the interface shape is, from
(3.20), given by

κ = −∆P
∗

which, for x→ 0 has the solution

z = (tan θ′m)x+ O(x2)

or, in terms of the polar coordinates, for r → 0 as

φ = θ′m + O(r), (3.24)

where θ′m is a constant. If we define θ as the angle the tangent to the interface makes
with the solid surface at a general position on the interface (see figure 1) so that

θ =

[
φ+ tan−1

(
r
dφ

dr

)]∣∣∣∣
interface

(3.25)

then we see from (3.24) that at order Ca0, the interface may also be written as

θ = θ′m + O(r) (3.26)

for r → 0†.
The flow field u1, p1 at order Ca0 is thus the solution of (3.17) with (3.22) applied on

the surface (3.24) (i.e. the liquid interface at order Ca0) and with (3.23) applied on the
solid surface φ = 0. Then if ψ1 is the stream function corresponding to the velocity
field u1 at order Ca0 so that its radial component (u1)r and transverse component
(u1)φ are

(u1)r =
1

r

∂ψ1

∂φ
, (u1)φ = −∂ψ1

∂r
, (3.27)

the above equations and boundary conditions for u1 reduce to

∇2
ψ1 = 0 (3.28)

with

ψ1 = α∗r1/2 on φ = 0, (3.29)

ψ1 = 0 on φ = θ′m. (3.30)

This possesses the solution

ψ1 = α∗r1/2(cos 1
2
φ− cot 1

2
θ′m sin 1

2
φ). (3.31)

Thus

(u1)r = − 1
2
α∗r−1/2

(
sin 1

2
φ+ cot 1

2
θ′m cos 1

2
φ
)
, (3.32)

(u1)φ = − 1
2
α∗r−1/2

(
cos 1

2
φ− cot 1

2
θ′m sin 1

2
φ
)
, (3.33)

so that by (3.18) the corresponding pressure field p1 is

p1 = − 1
8
α∗2r−1cosec2 1

2
θ′m + constant. (3.34)

† We should note that |u1|2 is singular, O(r−1) as r → O, and so the term of O(Ca) in (3.20)
is also singular. θ′m has therefore to be interpreted with that in mind. The consequences of this
singularity become clearer later, in (3.37), where θ is shown to behave as O(Ca ln r).



Inertial and viscous effects on dynamic contact angles 257

Interface

Inner boundary layer region

Moving plate

z

r

x

φ

ˆ

ˆ

ˆ

U

Figure 2. The inner flow region.

Hence from the form of the interface curvature given by (3.20), it is seen that the
interface shape as r → 0 is

θ ∼ (θ′m + . . .) + Ca θ1 + . . . , (3.35)

where
dθ1

dr
= 1

2
|u1|2 = 1

8
α∗2r−1cosec2 1

2
θ′m . (3.36)

(It should be noted that (3.35) and (3.36) assume a neglible Bond number.) Thus the
liquid interface for r → 0 is

θ ∼ (θ′m + . . .) + Ca ( 1
8
α∗2cosec2 1

2
θ′m ln r + Q1 + . . .) (3.37)

where Q1 is a constant of integration. Since the angle θ′m is at present undetermined
and since, as will be shown later, the value of θ′m in any particular problem is itself
a function of Ca (but is of order unity in the limit Ca → 0) we may, for simplicity,
absorb the term CaQ1 into θ′m by writing

θm = θ′m + CaQ1 (3.38)

so that as r → 0, the liquid interface is

θ ∼ (θm + . . .) + Ca( 1
8
α∗2cosec2 1

2
θm ln r + . . .). (3.39)

The quantity θm, which we will refer to as the macroscopic constant angle, will be
regarded as being determined by (3.39), the asymptotic form of the liquid interface
shape as r → 0 in our outer region for any particular flow situation and spreading
velocity.

4. Inner region
An inner region of expansion valid close to the contact line at P is defined in the

same manner for the case where viscous forces dominate (Cox 1986) using variables
made dimensionless by s, U and µ. We thus use Cartesian coordinates (x̂, ẑ) or polar
coordinates (r̂, φ) (with origin at P moving with the contact line) as independent
variables (see figure 2) where

x̂ = ε−1x, ẑ = ε−1z, r̂ = ε−1r. (4.1)
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The velocity û and pressure p̂ are thus given in terms of the velocity u and pressure
p in the outer region by

û = u and p̂ = p. (4.2)

Since the Reynolds number (εRe) for flow in this inner region has been assumed (see
(2.4)) to be large, the flow is inviscid apart from a boundary layer at the solid surface.

In the inner inviscid region outside the boundary layer the flow equations (3.2)
become

(εRe)−1(∇̂
2
û)− ∇̂p̂ = û · ∇̂û,
∇̂ · û = 0,

}
(4.3)

which at lowest order in the small parameter (ε−1Re−1) gives the inviscid Euler
equations, which, as we have already seen, implies that û is irrotational. In fact, as in
the outer region, û is zero at order (ε−1Re−1)0.

Within the inner boundary layer we use inner boundary layer coordinates (x̂, ẑ),
velocity (û, ŵ) and pressure p̂ defined in a manner similar to the outer boundary layer
variables (see (3.6)) but with Re replaced by εRe, i.e.

x̂ = x̂, ẑ = (εRe)1/2ẑ, û = û, ŵ = (εRe)1/2ŵ, p̂ = p̂. (4.4)

However, the slip length s, which is as yet undefined, must be chosen in a manner
which is dependent on the slip law which applies at the solid surface. For example,
let us consider the slip model considered by Hocking (1977), Huh & Mason (1977b)
and Lowndes (1980) in which the difference in tangential velocity between liquid and
solid is equal to a constant α multiplied by the shear velocity gradient at the solid
surface ẑ = 0 so that in our inner (hat variables)

û− 1 =
α

R
ε−1 ∂û

∂ẑ
=
(α
s

) ∂û
∂ẑ
. (4.5)

Then using the inner boundary layer variables given by (4.4) and expanding û, ŵ and
p̂ for small (εRe)−1 in the form

û = û0 + . . . , ŵ = ŵ0 + . . . , p̂ = p̂0 + . . . ,

we see that in a manner similar to the outer boundary layer, our inner boundary
layer velocity field û0, ŵ0 satisfies the boundary layer equations (see (3.9))

∂2û0

∂ẑ
2

= û0

∂û0

∂x̂
+ ŵ0

∂û0

∂ẑ
,

∂û0

∂x̂
+
∂ŵ0

∂ẑ
= 0, (4.6)

where

û0 → 0 as ẑ →∞, (4.7)

and

ŵ0 = 0 on ẑ = 0, (4.8)

with the slip law (4.5) taking the form

û0 − 1 =
(α
s

)
(ε−1Re−1)−1/2 ∂û0

∂ẑ
on ẑ = 0. (4.9)

In order that the solution of (4.6) with boundary conditions (4.7)–(4.9) does not
depend on Re we define the ‘slip length’ s so that(α

s

)
(ε−1Re−1)−1/2 = 1, (4.10)
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the boundary condition (4.9) then taking the form

û0 − 1 =
∂û0

∂ẑ
on ẑ = 0. (4.11)

The relation (4.10) may be written as

α

s
= (ε−1Re−1)1/2 =

( ν

sU

)1/2

(4.12)

giving the ‘slip length’ s as

s =
α2U

ν
. (4.13)

The boundary layer equations (4.6) with boundary conditions (4.7), (4.8) and (4.11)
possess a similarity solution for x̂→∞ when (4.11) is replaced by

û0 = 1 on ẑ = 0. (4.14)

This solution, with û0, ŵ0 of the form

û0 = f1(x̂
−1/2

ẑ), ŵ0 = x̂
−1/2

g1(x̂
−1/2

ẑ) (4.15)

is the same as that studied by Sakiadis (1961) (see § 3) for which

ŵ0 ∼ − 1
2
α∗x̂

−1/2
as ẑ →∞, (4.16)

where α∗ is given by (3.13). Also, for x̂ → 0, when (4.11) is replaced by

∂û0

∂ẑ
= −1 on ẑ = 0 (4.17)

there is a similarity solution with û0, ŵ0 of the form

û0 = x̂
1/3
f2(x̂

−1/3
ẑ), ŵ0 = x̂

−1/3
g2(x̂

−1/3
ẑ). (4.18)

For a general value of x̂, the value of ŵ0 for ẑ → ∞ may be obtained by integrating
the continuity equation in (4.6) as

limẑ→∞ ŵ0 = −
∫ ∞

0

∂û0

∂x̂
dẑ (= F(x̂) say), (4.19)

where, by (4.16) and (4.18),

F(x̂) ∼ Ax̂−1/3
as x̂→ 0, (4.20a)

F(x̂) ∼ − 1
2
α∗x̂

−1/2
as x̂→∞. (4.20b)

Thus we see by matching onto the inner inviscid region (using (4.4) and (4.6)), that
the irrotational flow û = (û, 0, ŵ) must satisfy

ŵ ∼ (εRe)−1/2F(x̂) on ẑ = 0. (4.21)

This suggests that û = (û, 0, ŵ) and pressure p̂ should, for (εRe)−1 → 0, be expanded
in a manner similar to the outer inviscid solution (see (3.15)) as

û = (εRe)−1/2û1 + . . . , p̂ = (εRe)−1p̂1 + . . . , (4.22)

where û1 is irrotational so that

∇× û1 = 0, ∇ · û1 = 0 (4.23)
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with

ŵ1 = F(x̂) on ẑ = 0 (4.24)

and

n · û1 = 0 (4.25)

on the liquid interface. The normal stress boundary condition (3.20) at the liquid
interface in our inner variables becomes

κ̂ = 1
2
Ca ε|u1|2 + O(ε) = 1

2
Ca (εRe)|û|2 + O(ε) = 1

2
Ca|û1|2 + O(ε), (4.26)

where κ̂ = εκ is the liquid interface curvature in inner variables. At order Ca0, this
boundary condition (4.26) gives κ̂ = 0, showing that the interface is planar at this
order. Thus the interface may be written as

φ = θw + Caθ1 + . . . , (4.27)

where θw is defined as the angle between the liquid interface and the solid surface at
the contact line (at P). This angle θw , which will be called the microscopic contact
angle is determined by the intermolecular forces acting very near the contact line
between the molecules of the liquid and of the solid surface.

Thus at order Ca0 the velocity field û1 satisfies (4.23) to (4.25) with (4.25) applied
on the Ca0 position of the liquid interface (i.e. on the plane (4.27)). Thus u1 at this
order is a function only of position r̂, φ in the inner variables and of θw so that if we
write

û1 = G(r̂, φ; θw) (4.28)

we see from the form of F(x̂) as x̂ → ∞ (see (4.20b)) that, as in § 3, û1 for r̂ → ∞ is
given by (3.32) and (3.33) with r̂ replacing r. Also in a similar manner we see from
the form of F(x̂) as x̂ → 0 (see (4.20a)) that, as r̂ → 0, û1 is proportional to r̂−1/3.
Thus the liquid interface at order Ca+1 given by (4.26) is

κ̂ ≡ dθ1

dr̂
= 1

2
Ca | G(r̂, φ; θw) |2, (4.29)

where

| G(r̂, θw; θw) |2 ∼ 1
4
α∗2r̂−1 cosec2 1

2
θw as r̂ →∞ (4.30)

∼ r̂−2/3 as r̂ → 0.

Equation (4.29) may be integrated to give the slope angle θ of the liquid interface as

θ(r̂) = θw + 1
2
Ca

∫ r̂

0

| G(r̂, θw; θw) |2 dr̂ (4.31)

where we note from (4.30) that the integral is convergent at its lower limit (so that
it is unnecessary to examine the breakdown of the boundary layer solution close to
r̂ = 0) and also that as r̂ →∞ the liquid interface has the asymptotic form

θ(r̂) = θw + Ca
{

1
8
α∗2cosec2 1

2
θw ln r̂ + Q∗iv + . . .

}
, (4.32)

where the integration constant Q∗iv depends only on θw . However it should be noted
that if the slip length s had not been chosen in the manner given by (4.10) (and
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(4.13)) then Q∗iv would not be a constant but would depend on the spreading velocity
U (and on ν and α)†.

From the above analysis of the situation where one has the particular slip model
given by (4.5), we can see that for any realistic slip model (in which one has the
no-slip condition for large x̂) the interface shape will be given by (4.32) for r̂ → ∞
although in general, for the constant Q∗iv not to depend on the spreading velocity, it
would require a suitable definition of the slip length s.

The slip model (considered by Huh & Mason 1977b) in which one has zero
tangential stress on the liquid at the solid surface at distances from the contact line
less than some distance s∗ and no slip for distances greater than s∗, may be written
in terms of the inner variables as

∂û

∂ẑ
= 0 for 0 6 x̂ <

s∗

s
,

û = 1 for
s∗

s
6 x̂

 (4.33)

on the solid surface ẑ = 0. Then it is readily seen that to obtain the asymptotic form
(4.32) of the liquid interface for r̂ →∞ in which Q∗iv does not depend on the spreading
velocity U would require

s = s∗ (4.34)

so that in this model at least the slip length would be independent of U.
For a more general type of the slip model (4.5) in which the difference ∆u in

tangential velocity between liquid and solid is

∆u = B | shear gradient |p (4.35)

where B and p are constants‡ (p > 0), one may, by arguments similar to that given
above for the case p = 1, show that for Q∗iv in (4.32) not to depend on the spreading
velocity U, the slip length s must be chosen such that

s = ν−1U3−2/pB2/p (4.36)

showing that as U increases, s will either increase or decrease according to whether p
is greater than or less than 2

3
.

It is interesting to note that, for the situation considered by Cox (1986) where
viscous forces dominate (UR/ν � 1), the slip model (4.33) requires, for the quantity
corresponding to Q∗iv (see equation (4.13) in Cox 1986) not to depend on the spreading
velocity U, that again

s = s∗. (4.37)

However for slip model (4.35) one would require, for this viscous-dominated case
(UR/ν � 1), the slip length s to be

s = U1−1/pB1/p (4.38)

showing that for this situation, as U increases, s will either increase or decrease
according to whether p is greater than or less than unity. This result (4.38) for the slip

† This seems to be a relatively unimportant point since Q∗iv can be incorporated into the scaling
for r̂ whatever its dependence on U, ν and θw provided that these are given. The crucial results are
clearly (4.31), which shows that the velocity singularity does not prevent the continuum model used
from having a well-defined contact angle, and (4.17), which removes the integrated force singularity
on the surface as the contact line is approached.
‡ Note that B will have dimensions of (velocity) 1−p (length) p.
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length for the viscous situation is different from that required for the present inviscid
situation (see (4.36)).

5. Matching with two and three regions
If the limit of Ca → 0 with ε fixed and small is considered, the outer and inner

solutions may be matched onto each other. Thus writing (4.32), the inner solution
valid for r̂ →∞, in terms of outer variables, we obtain

θ = {θw + . . .}+ Ca
{

1
8
α∗2cosec2 1

2
θw(ln r + ln ε−1) + Q∗iv + . . .

}
+ . . . (5.1)

which when compared with the outer solution (3.39) valid for r → 0 with θm =
θm0 + Caθm1 + . . ., gives

θm0 = θw, θm1 = 1
8
α∗2cosec2 1

2
θw ln ε−1 + Q∗iv (5.2)

with the terms in ln r automatically matching. Thus

θm = θw + Ca
{

1
8
α∗2cosec2 1

2
θw(ln ε−1) + Q∗iv(θw)

}
. (5.3)

This result (5.3) relates the unknown constant θm, the macroscopic contact angle,
appearing in the outer region solution, to the spreading velocity U (involved in the
definition of Ca) and to the microscopic contact angle θw . As mentioned in § 3, this
macroscopic contact angle θm is considered as being determined by the asymptotic
form (3.39) of the liquid interface shape as the contact line is approached in the outer
region (i.e. as r → 0).

In a manner similar to the situation where viscous forces dominate (Cox 1986), it
is seen that (5.3) is only valid for Ca→ 0, ε→ 0 if the quantity Ca ln(ε−1) also tends
to zero. Under such a situation the interface is approximately planar near the contact
line in the inner and outer regions. However when Ca → 0, ε → 0 with Ca ln(ε−1)
of order unity, the result (5.3) is no longer valid since there is then no overlap of
the inner and outer regions. It is then necessary to introduce a third region called
the intermediate region which must exist between the inner and outer regions. This
was done by Hocking & Rivers (1982) and Cox (1986) for the viscous flow situation
(UR/ν � 1). In the subsequent analysis we limit ourselves to this case (Ca→ 0, ε→ 0
with Ca ln (ε−1) of order unity) where the three regions are necessary.

6. Intermediate region
In the intermediate region (see figure 3), we use the same coordinates (X̃, φ) as for

the viscous flow case (Cox 1986) with X̃ defined by

X̃ = Ca ln r, (6.1)

where

−Ca ln (ε−1) < X̃ < 0. (6.2)

Then it is seen that the end points X̃ = 0 and X̃ = −Ca ln (ε−1) correspond respectively
to the outer region (with r of order unity) and the inner region (with r̂ of order unity).
Thus the intermediate-region expansion must be matched onto the outer region at
X̃ = 0 and onto the inner region at X̃ = −(Ca ln (ε−1)). The velocity ũ and pressure
p̃ in this intermediate region are defined by

ũ = u, p̃ = p. (6.3)
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Figure 3. The intermediate region.

Since for any fixed value of X̃(< 0), r is exponentially small for Ca → 0, the flow is
two-dimensional. Again as in both inner and outer regions we have irrotational flow
except in a boundary layer at the solid surface. Also, since in this intermediate region
the no-slip boundary condition applies at the solid surface with the irrotational flow
outside the boundary layer (in the intermediate inviscid region) being the zero flow
at order Ca0, it follows, as in the outer region, that at order Ca0 the boundary layer
is that of Sakiadis (see § 3). Thus we see that in the intermediate inviscid region the
velocity ũ is of order Re−1/2 (and pressure p̃ of order Re−1) with a flow into the
boundary layer given by (3.14). Thus in the intermediate inviscid region we expand
for large Re as

ũ = Re−1/2ũ1 + . . . , p̃ = Re−1p̃1 + . . . , (6.4)

where ũ1 is irrotational so that

∇× ũ1 = 0, ∇ · ũ1 = 0 (6.5)

with the φ-component of ũ1 on φ = 0 corresponding to the flow (3.14) into the
boundary layer, i.e.

(ũ1)φ = − 1
2
α∗r−1/2 on φ = 0. (6.6)

The zero normal velocity condition is

n · ũ1 = 0 (6.7)

on the liquid interface (where n is a unit normal vector to that interface). Since ũ1 is
two-dimensional, a stream function ψ̃1 = ψ1 defined as in (3.27) may be used so that

∇2
ψ̃1 = 0 (6.8)

with the radial component (ũ1)r and transverse component (ũ1)φ of ũ1 given by

(ũ1)r =
1

r

∂ψ̃1

∂φ
, (ũ1)φ = −∂ψ̃1

∂r
. (6.9)
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The boundary condition (6.6) suggests that in our intermediate inviscid region ψ̃1

should be taken as

ψ̃1 = r1/2g̃(X̃, φ). (6.10)

Substituting this expression for ψ̃1 into (6.9), we see that the velocity components
(ũ1)r and (ũ1)φ are given are given in terms of our intermediate-region variables as

(ũ1)r = r−1/2 ∂g̃

∂φ
, (ũ1)φ = r−1/2

(
− 1

2
g̃ − Ca ∂g̃

∂X̃

)
. (6.11)

Likewise the equation (6.8) for ψ̃1 becomes(
∂2g̃

∂φ2
+ 1

4
g̃

)
+ Ca

∂g̃

∂X̃
+ Ca2 ∂

2g̃

∂X̃2
= 0. (6.12)

The boundary condition (6.6) on the solid surface φ = 0 may, by using (6.11), be
written as

g̃ + 2Ca
∂g̃

∂X̃
= α∗ on φ = 0 (6.13)

which, when solved in terms of X̃, gives

g̃ = α∗ + A exp(−X̃/2Ca) on φ = 0, (6.14)

where A is a constant. This gives

ψ̃1 = α∗r1/2 + A on φ = 0 (6.15)

and since the stream function as defined is arbitrary to within an added constant, A
may be chosen to be zero. Thus the boundary condition (6.6) may written in the form

g̃ = α∗ on φ = 0. (6.16)

In the same manner as for the viscous case, the liquid interface is taken as

φ = β̃(X̃). (6.17)

The fluid velocity component un (away from the liquid) normal to this interface is
then found to be exactly

un =

{
1 +

(
Ca

dβ̃

dX̃

)2
}−1/2{

− 1
2
g̃ − Ca ∂g̃

∂X̃
− Ca dβ̃

dX̃

∂g̃

∂φ

}
r−1/2 (6.18)

so that the condition of zero normal velocity at the interface gives

g̃ + 2Ca
dg̃

dX̃
= 0 on φ = β̃(X̃) (6.19)

where

d

dX̃
≡ ∂

∂X̃
+

dβ̃

dX̃

∂

∂φ

is the total derivative with respect to X̃ along the interface. The solution of (6.19) is

g̃ = A′ exp(−X̃/2Ca) (6.20)

where A′ is a constant. This corresponds to ψ̃1 = A′ and since ψ̃1 was taken to be
zero on φ = 0 as r1/2 → 0 in (6.15) and there is no fluid source at the contact line, it
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follows that A′ = 0. Thus the boundary condition (6.19) becomes

g̃ = 0 on φ = β̃(X̃). (6.21)

With the values of (ũ1)r and (ũ1)φ given by (6.11), Bernoulli’s equation (3.18) written
in terms of the intermediate-region variables gives the value of p̃1 in (6.4) as

p̃1 = − 1
2
r−1

{
1
4
g̃2 +

(
∂g̃

∂φ

)2

+ Ca g̃
∂g̃

∂X̃
+ Ca2

(
∂g̃

∂X̃

)2
}
, (6.22)

where the constant (and hydrostatic) term may be omitted since for any X̃(< 0) it
will give an exponentially small fractional error of order r+1 = exp(X̃/Ca) as Ca→ 0.

The curvature κ of the liquid interface given by (6.17) was determined by Cox
(1986, equation (6.25)) as

κ = Ca r−1

{
1 +

(
Ca

dβ̃

dX̃

)2
}−3/2{

dβ̃

dX̃
+ Ca

d2β̃

dX̃2
+ Ca2

(
dβ̃

dX̃

)3
}
. (6.23)

From the form of the equation (6.12) and boundary conditions (6.16) and (6.21) for
g̃ it is seen that this quantity must be of the form

g̃ = g̃0 + Cag̃1 + . . . , (6.24)

where g̃0 satisfies

∂2g̃0

∂φ2
+ 1

4
g̃0 = 0 (6.25)

with

g̃0 = α∗ on φ = 0, (6.26)

g̃0 = 0 on φ = β̃(X̃) (6.27)

whilst g̃1 satisfies

∂2g̃1

∂φ2
+ 1

4
g̃1 = −∂g̃0

∂X̃
(6.28)

with

g̃1 = 0 on φ = 0 and on φ = β̃(X̃). (6.29)

The solution of (6.25)–(6.27) for g̃0 is

g̃0 = α∗
{

cos 1
2
φ− cot 1

2
β̃(X̃) sin 1

2
φ
}

(6.30)

so that (6.28) may be written as

∂2g̃1

∂φ2
+ 1

4
g̃1 = −α∗

{
1

2

dβ̃

dX̃
cosec2 1

2
β̃(X̃) sin 1

2
φ

}
. (6.31)

With the boundary conditions (6.29), this possesses the solution

g̃1 = 1
2
α∗

dβ̃

dX̃
cosec2 1

2
β̃
{
φ cos 1

2
φ− β̃ cot 1

2
β̃ sin 1

2
φ
}
. (6.32)

If the value of g̃ given by (6.24) is substituted into (6.22) the pressure p̃1 is obtained
as

p̃1 = − 1
2
r−1

[{
1
4
g̃2

0 +

(
∂g̃0

∂φ

)2
}

+ Ca

{
1
2
g̃0g̃1 + 2

∂g̃0

∂φ

∂g̃1

∂φ
+ g̃0

∂g̃0

∂X̃

}
+ . . .

]
(6.33)
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which, with the values of g̃0 and g̃1 given by (6.30) and (6.32) yields the pressure at
the liquid interface φ = β̃(X̃) as being

p̃1 = − 1
2
α∗2r−1

[(
1
4
cosec2 1

2
β̃
)

+ Ca

(
1

4

dβ̃

dX̃
cosec4 1

2
β̃

)
(β̃ − sin β̃) + . . .

]
. (6.34)

The normal stress boundary condition (3.22) at the liquid interface

κ = −Ca p̃1 on φ = β̃(X̃)

may, by (6.23) and (6.34), now be written in terms of the intermediate-region variables
as

dβ̃

dX̃
+ Ca

d2β̃

dX̃2
= 1

8
α∗2
[(

cosec2 1
2
β̃
)

+ Ca

{
dβ̃

dX̃
(β̃ − sin β̃)cosec4 1

2
β̃

}
+ O(Ca2)

]
.

(6.35)
Thus β̃ must be of the form

β̃ = β̃0 + Ca β̃1(X̃) + . . . (6.36)

and this, when substituted into (6.35), gives at order Ca0

dβ̃0

dX̃
= 1

8
α∗2cosec2 1

2
β̃0 (6.37)

and at order Ca+1

dβ̃1

dX̃
+
(

1
8
α∗2cosec3 1

2
β̃0 cos 1

2
β0

)
β̃1 = −d2β̃0

dX̃2
+ 1

8
α2 dβ̃0

dX̃
(β̃0 − sin β0) cosec4 1

2
β̃0. (6.38)

The solution of (6.37) for β̃0 is

X̃ = giv(β̃0) +K (6.39)

where

giv(β̃0) = 4α∗−2(β̃0 − sin β̃0) (6.40)

and K is an arbitrary constant of integration.
If X̃ is eliminated from equations (6.37) and (6.38) and β̃1 considered as a function

of β̃0, we obtain after a lengthy calculation

β̃1 = cosec2 1
2
β̃0

{
1
8
α∗2hiv(β̃0) + L

}
, (6.41)

where

hiv(β̃0) = −2 ln
(
sin 1

2
β̃0

)
+ 2

∫ β̃0

π

βdβ

1− cos β
(6.42)

and L is an arbitrary constant.
From (6.36), (6.39) and (6.41), it is seen that correct to an error of order Ca+2 the

liquid interface may be written as

X̃ = {giv(β̃) +K} − Ca{hiv(β̃) + 8α∗−2L}+ . . . . (6.43)

Since the slope angle θ that the liquid interface makes with the solid surface is (see
Cox 1986, equation (6.9))

θ = β̃ + tan−1

(
Ca

dβ̃

dX̃

)
∼ β̃ + Ca

dβ̃

dX̃
+ O(Ca2), (6.44)
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it is seen that the interface shape given by (6.43) may be expressed alternatively as

X̃ = {giv(θ) +K} − Ca{1 + hiv(θ) + 8α∗−2L}+ O(Ca2). (6.45)

From the form (3.39) of the outer expansion as r → 0 we see that matching onto
the intermediate expansion requires that

θ =
(
θm + 1

8
α∗2cosec2 1

2
θmX̃ + . . .

)
+ o(Ca+1) (6.46)

as X̃ → 0 in the intermediate region. From (6.40) we see that (6.46) may be written,
by expanding for small X̃ and Ca, as

giv(θ) = {giv(θm) + X̃ + . . .}+ o(Ca+1)

or as

X̃ = {giv(θ)− giv(θm) + o(X̃)}+ o(Ca+1). (6.47)

Thus comparing this with (6.45) and making use of (6.46), we see that K and L must
be

K = −giv(θm), (6.48)

L = − 1
8
α∗2(1 + hiv(θm)). (6.49)

Substituting these values back into (6.45) we obtain the liquid interface shape in the
intermediate region as

X̃ = {giv(θ)− giv(θm)} − Ca{hiv(θ)− hiv(θm)}+ O(Ca2). (6.50)

Since the intermediate-region solution must be matched onto the asymptotic form
(4.32) of the inner solution at X̃ = −Ca ln (ε−1) we write

X̃ = −Ca ln (ε−1) + Ỹ (6.51)

so that Ỹ = Ca ln r̂. Then in the intermediate region, (6.50) may be written

Ỹ = {Ca ln ε−1 + giv(θ − giv(θm)} − Ca{hiv(θ)− hiv(θm)}+ O(Ca2), (6.52)

where we are assuming that (Ca ln ε−1) is of order unity.
Then for matching, (4.32) expressed in terms of Ỹ , i.e. as

θ ∼
(
θw + 1

8
α∗2cosec2 1

2
θwỸ + . . .

)
+ Ca(Q∗i + . . .) + . . . , (6.53)

must in the limit Ỹ → 0 be identical with (6.52). Proceeding as for matching onto the
outer region, we observe that from (6.53)

giv(θ) = {giv(θw) + Ỹ + . . .}+ Ca
{

8α∗−2 sin2 1
2
θwQ

∗
iv + . . .

}
+ . . .

or

Ỹ = {giv(θ)− giv(θw)} − Ca
{

8 α∗−2 sin2 1
2
θwQ

∗
iv + . . .

}
+ . . . . (6.54)

Thus by matching (and noting from (6.53) that θ ∼ θw + . . .) we obtain

−giv(θw)−Ca g′iv(θw)Q∗iv = Ca ln ε−1−giv(θm)−Cahiv(θw)+Ca hiv(θm)+O(Ca2), (6.55)

where g′iv is the derivative of the function giv . This result (6.55) may be written in the
form

Ca =
giv(θm)− giv(θw)

ln ε−1 + hiv(θm)− hiv(θw) + g′iv(θw)Q∗iv
+ O

(
1

ln ε−1

)3

(6.56)
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where, with the value of α∗ given by (3.13), (see (6.40) and (6.42))

giv(θ) = 1.53162(θ − sin θ), (6.57)

hiv(θ) = −2 ln(sin 1
2
θ) + 2

∫ θ

π

θ dθ

(1− cos θ)
. (6.58)

The result (6.56) gives the macroscopic contact angle θm in terms of the spreading
velocity U (involved in the definition of Ca) and the microscopic contact angle θw
where we have defined the macroscopic contact angle θm by the asymptotic form
(3.39) of the interface shape as r → 0 in the outer region. Note that (3.39) may also
be written in the form

θ ∼ (θm + . . .) + Ca{(g′iv(θm))−1 ln r + o(r0)}+ . . . . (6.59)

The quantity Q∗iv in (6.56) depends only on θw and the assumed slip law model at the
solid surface.

These results, valid for the present situation (εRe� 1) for advancing contact lines
in which inertia effects dominate, are very similar to the analogous results (Cox (1986)
equations (4.14), (3.21), (7.11) and (7.21)) for viscous flow (Re� 1) for both advancing
and receding contact lines. These latter results (with some minor changes in notation)
give

Ca =
gv(θm)− gv(θw)

ln ε−1 + g′v (θw) Q∗v
+ O

(
1

ln ε−1

)3

, (6.60)

where gv(θ) is the function

gv(θ) =

∫ θ

0

dθ

fv(θ)
, (6.61)

where

fv(θ) =
2 sin θ[λ2(θ2 − sin2 θ) + 2λ{θ(π − θ) + sin2 θ} + {(π − θ)2 − sin2 θ}]

λ(θ2 − sin2 θ){(π − θ) + sin θ cos θ}+ {(π − θ)2 − sin2 θ}(θ − sin θ cos θ)
(6.62)

for a fluid of viscosity µ displacing one of viscosity λµ. Here (6.60) relates the
macroscopic contact angle θm to the spreading velocity U, the microscopic contact
angle θw and the viscosity ratio λ. Again the macroscopic contact angle θm is defined
by the asymptotic form as r → 0 of the interface shape in the outer region, i.e. by

θ ∼ (θm + . . .) + Ca{(g′v(θm))−1 ln r + o(r0)}+ . . . . (6.63)

The quantity Q∗v in (6.60), like Q∗iv , depends only on θw and the assumed slip law
model at the solid surface. Thus the results for our present inviscid flow (εRe� 1) for
advancing contact lines are essentially the same as for viscous flow (Re� 1) except
that the function gv(θ) is replaced by giv(θ) with additional terms involving a function
hiv(θ) appearing in (6.56).

7. Discussion of inviscid results
Since our result (6.56) for the macroscopic contact angle θm is valid for Ca → 0

and ε → 0 with Ca ln ε−1 of order unity, the values of θm obtained from (6.56) can
differ from the microscopic contact angle θw by an amount of order unity (as was
also true for the viscous result (6.60)). However if we consider the result (6.56) (or
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the equivalent result (6.55)) for the situation Ca → 0 with ε fixed and small so that
Ca ln ε−1 → 0, we see that at order Ca0, θm is equal to θw . Thus

θm = θw + Ca θ1 + O(Ca2)

which when substituted into (6.53) yields at order Ca+1

θ1 = Q∗iv +
ln ε

g′iv(θw)

giving, with giv defined by (6.57),

θm = θw + Ca
{

1
8
α∗2cosec2 1

2
θw(ln ε−1) + Q∗iv

}
+ . . .

which is identical to the result (5.3) valid for this situation obtained using two (inner
and outer) rather than three (inner, intermediate and outer) regions of expansion.

In deriving our result (6.56) for the macroscopic contact angle θm, it was assumed
that in the inviscid region outside the boundary layer (whether within the inner,
intermediate or outer regions), there was zero flow at order Re0. However if at this
order there is a flow (produced for example by boundaries within the outer region
having normal components of velocity) it must be a velocity field which behaves like

r(2nπ/θm−1) as r → 0 where n is a positive integer (if the flow is irrotational) or
possibly like r+1 (if the flow possesses vorticity)†. In either case this gives a velocity
which tends to zero as the contact line is approached. However a non-zero pressure
gradient in the x-direction is produced at the solid wall (obtained by using Bernoulli’s

equation) which is proportional to x(4nπ/θm−3) (due to the irrotational velocity field)
or to x+1 (if the flow possesses vorticity). This pressure gradient would then appear
as an additional term in the boundary layer equations (3.9) but would have no effect
on the boundary layer in the limit x → 0. Thus we see that the conditions (e) and
(h) mentioned in § 2 for the validity of the present theory may be removed. This
also implies that in the inner and intermediate regions (and outer region r → 0), the
condition (f) of § 2 of no boundary layer separation is satisfied (there being negligible
pressure gradient along the boundary layer).

The condition (g) in § 2 that the boundary layer does not become turbulent is
almost certainly well satisfied within the inner region since for validity of the theory
Ca� 1 implying that the spreading velocity U is much smaller than σ/µ. This would
give the Reynolds number for the boundary layer based on the slip length s as smaller
than σs/µν which would be almost certainly, for all fluids, very much smaller than
the value of 105–106 required for the boundary layer to be turbulent. It is possible,
however, that the Reynolds number (smaller than σR/µν) for the boundary layer in
the outer region may be high enough for the boundary layer there to be turbulent.
If this is the case all that is necessary is to define θm from the interface shape (6.59)
at smaller distances from the contact line where the boundary layer is known to be
laminar.

The functions giv(θ) and hiv(θ) given by (6.57) and (6.58), which are required for
using (6.56), have been plotted in figure 4 from which it is observed that as θ increases
from 0 to π, giv(θ) increases monotonically from zero to a value 4πα∗−2(= 4.8117)

† The arguments behind these deductions seem to be: for the irrotational case, any solution of
(6.8) will have a leading term for ψ̃ of separable form rm exp(imθ), which leads to m = 2nπ/θm if it
is required that ψ̃ has the same constant value on θ = 0 and θ = θm; for the case with vorticity the
hypothesis that the vorticity tends to a constant in a steady flow leads to a velocity field behaving
as r near r = 0.
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Figure 4. The functions giv(θ) and hiv(θ) (given by (6.57) and (6.58)) and also gv(θ)
(given by (7.10)).

with asymptotic values readily shown to be

giv ∼ 2
3
α∗−2θ3 + . . . as θ → 0 (7.1)

∼ 4πα∗−2 − 8α∗−2(π − θ) + . . . as θ → π. (7.2)

Also hiv increases monotonically from −∞ at θ = 0 to zero at θ = π with asymptotic
values

hiv ∼ 2 ln θ + . . . as θ → 0 (7.3)

∼ −π(π − θ) + 3
4
(π − θ)2 + . . . as θ → π. (7.4)

Our result (6.55) for the advancing macroscopic contact angle θm may be put in a
simpler, but more approximate form, by neglecting terms of order Ca+1 (but retaining
the term Ca ln ε−1 since it is assumed to be of order unity) to obtain

giv(θm) = giv(θw) + Ca ln ε−1 + O

(
1

ln ε−1

)
(7.5)

or

Ca =
giv(θm)− giv(θw)

ln ε−1
+ O

(
1

ln ε−1

)2

, (7.6)

where giv(θ) is given by (6.57).
The advantage in using the result (7.6) (or (7.5)) rather than (6.56) (or (6.55)) is that

one does not have to calculate the quantity Q∗iv which would involve the derivation of
the flow field in the inner region for the particular slip model chosen. In fact the result
(7.6), as written, is independent of the slip model used (or of any other mechanism
which might get rid of the flow singularity at the contact line) although it should be
noted that the slip length s, used in the definition of ε, may depend on the spreading
velocity U in a manner dependent on the slip model which is chosen. Also the use of
the result (7.5) (or (7.6)) is very straightforward with θm being obtained directly from
the plot of θ versus giv (see figure 4) in a simple graphical procedure. Thus, as shown
in figure 5, from the known value of the microscopic contact angle θw , the value of
giv(θw) may be read off. Then by moving along the abscissa an amount (Ca ln ε−1)
to the right the value of giv(θm) is obtained (see equation (7.5)), the value of θm then
being read off on the ordinate.

From (7.5) and the form of giv(θ) shown in figure 5 it is observed that for
any given microscopic contact angle θw the macroscopic contact angle θm increases
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Figure 5. Graphical procedure for the calculation of θm.

monotonically with capillary number Ca (and hence with spreading velocity U) for
an advancing contact line with a solution only existing up to a critical value Camax of
the capillary number for which the macroscopic contact angle has the value of 180◦.
This value Camax is, by (7.5),

Camax =
4πα∗−2 − giv(θw)

ln ε−1
(7.7)

giving a maximum spreading velocity Umax of

Umax =
σ

µ

(
4πα−2 − giv(θw)

ln ε−1

)
. (7.8)

It is uncertain what happens in our present situation of εRe� 1 if one physically
imposes a spreading velocity greater than Umax. It seems that there is no steady shape
of the interface possible. In the viscous situation of Re� 1 discussed by Cox (1986)
a similar situation was predicted with the macroscopic contact angle θm increasing
monotonically with Ca and obtaining a value of 180◦ at a critical capillary number
(except for the case of an advancing contact line with a pair of immiscible fluids
with a viscosity ratio λ = 0). For such a situation it is known experimentally that the
liquid ahead of the contact line can be entrained as a film (or drops) beneath the
other liquid behind the contact line (Invararity 1969; Burley & Brady 1973; Burley
& Kennedy 1976; Kennedy & Burley 1977).

In a manner similar to the way in which the result (6.56) for the macroscopic contact
angle for the present inviscid situation (εRe� 1) may be approximated by (7.6), so
also may the result (6.60) for the viscous situation (Cox 1986) be approximated by

Ca =
gv(θm)− gv(θw)

ln ε−1
+ O

(
1

ln ε−1

)2

, (7.9)

where gv(θ) is given by (6.61) and (6.62). As pointed out by Cox (1986), the value of
θm may be obtained directly from the graph of θ versus gv(θ) for a particular viscosity
ratio λ in the same manner as for the inviscid case as shown in figure 5.

Thus for a single fluid advancing (into a vacuum) we see that the macroscopic
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contact angle θm is determined by (7.6) with giv(θ) given by (6.57) for the inviscid case
εRe� 1 and by (7.9) with gv(θ) given by (6.61) and (6.62) with λ = 0, i.e. by

gv(θ) =

∫ θ

0

(θ − sin θ cos θ)

2 sin θ
dθ (7.10)

for the viscous case Re� 1. The graph of θ versus gv(θ) given by (7.10) is shown in
figure 4.

Whilst it is easy to find examples of slowly spreading viscous liquids for which
Re � 1 (for which one has a viscous situation), it requires a very inviscid fast
spreading liquid for our present inviscid situation requiring εRe� 1. However it can
occur even for an advancing contact line for which the capillary number must be
less than Camax given by (7.7). If we have, for example, water as the liquid with
θw = 0◦, s = 5 × 10−5 cm and R = 10−1 cm (giving ε = 5 × 10−4) then, by (7.7),
Camax = 0.63 giving a maximum spreading velocity of 44 m s−1. With such a velocity,
εRe has a value of approximately 22.

However for water spreading at a lower speed or for a more viscous fluid one could
have the situation in which one had neither the inviscid situation (with εRe� 1) nor
the viscous situation (with Re� 1). Such intermediate situations will examined in the
following section.

8. Solution for general Reynolds number
In our present theory (given in §§ 2–6) we have examined inviscid spreading of

a single liquid with εRe� 1, by making an expansion in the capillary number Ca
(correct to order Ca+1) which had been assumed small. In doing this the quantity
(Ca ln ε−1) was taken to be small or of order unity (there then being three regions of
expansion). Cox (1986) examined viscous spreading with Re� 1 of one immiscible
fluid displacing another. This was also done by making an expansion in the capillary
number Ca (correct to order Ca+1) with Ca ln ε−1 of order unity.

The results for both εRe� 1 (or Re� ε−1) and Re� 1 for the advancing of a
single liquid in the more approximate form (correct to order Ca0) have been given at
the end of § 7. We now examine the more general situation

1�Re� ε−1 (8.1)

in which viscous effects dominate in the intermediate region as one approaches the
inner region but the flow is inviscid (apart from the boundary layer on the solid
surface) in the intermediate region as one approaches the outer region. This will be
done also by making an expansion in the capillary number Ca with Re held fixed
(and satisfying (8.1)) and with (Ca ln ε−1) assumed to be of order unity (so that one
still has an inner, an intermediate and an outer region of expansion). However, for
simplicity we only consider terms of order Ca0, neglecting terms of order Ca+1.

If we let

X̃∗ = Ca lnRe−1 (8.2)

then X̃ = X̃∗ is within the intermediate region since from the assumptions made

−Ca ln ε−1 < X̃∗ < 0. (8.3)

In fact X̃ = X̃∗ corresponds to a value of r = Re−1 and hence to radial distances r of
order ν/U for which inertia and viscous effects are of the same order with rU/ν of
order unity. Then we note that if we define a new independent variable r∗ as radial
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Figure 6. The sub-division of the intermediate region.

distance r from the contact line made dimensionless by the lengthscale ν/U so that

r∗ =
rU

ν
= Re r (8.4)

then

X̃ − X̃∗ = Ca ln r∗ (8.5)

or

r∗ = exp{Ca−1(X̃ − X̃∗)}. (8.6)

The intermediate region must now be subdivided into three subregions† as illustrated
in figure 6, these being:

(a) A viscous sub-region in which X̃ satisfies

−Ca ln ε−1 < X̃ < X̃∗ (8.7)

with X̃, φ being used as independent variables (with velocity ũ = u and pressure
p̃ = p). Throughout this region rU/ν = r∗ is, by (8.6), exponentially small as Ca→ 0,
so that the flow within this sub-region is viscous-dominated with the velocity and
pressure satisfying the Stokes equations. This flow must be matched onto the viscous
dominated flow in the inner region as X̃ → −Ca ln ε−1 from above.

(b) An inviscid sub-region in which X̃ satisfies

X̃∗ < X̃ < 0 (8.8)

with X̃, φ again being used as independent variables (with velocity ũ = u and pressure
p̃ = p). Throughout this sub-region rU/µ = r∗ is, by (8.6), exponentially large as
Ca → 0, so that we have (for an advancing contact line) a high Reynolds number
flow consisting of an irrotational flow with a boundary layer at the solid surface (as
for the flow discussed in § 6). This flow must be matched onto the irrotational flow
(and boundary layer) in the outer region (see § 3) as X̃ → 0 from below.

† Because X̃ already involves a logarithm, it seems reasonable to use < instead of � to define
overlapping regions.
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(c) A transition sub-region at X̃ = X̃∗ + O(Ca) in which r∗, φ are used as in-
dependent variables (with velocity ũ∗ = u and pressure p̃∗ = p). In this sub-region
where viscous and inertia effects are of the same order, we require that as r∗ → 0,
the solution matches onto the viscous subregion with X̃ → X̃∗ from below and as
r∗ → ∞, the solution matches onto the inviscid sub-region with X̃ → X̃∗ from above.
In this transition sub-region, it may be readily shown that ũ∗, p̃∗ satisfy the full steady
Navier–Stokes equations

∇̃∗2ũ∗ − ∇̃∗p̃∗ = ũ∗ · ∇̃∗ũ∗,
∇̃∗ · ũ∗ = 0,

}
(8.9)

with the boundary conditions

(ũ∗)r = +1, (ũ∗)φ = 0 (8.10)

on φ = 0 and

ũ∗i ni = 0, tiσ̃
∗
ijnj = 0 (8.11)

on the liquid interface, where (ũ∗)r and (ũ∗)φ are the radial and transverse components
of ũ∗, σ̃∗ij is the stress tensor and where n and t are unit normal and unit tangent
respectively to the liquid interface. In addition, the normal stress boundary condition
on the liquid interface may be written as

κ̃∗ = Ca(ni σ̃
∗
ij nj), (8.12)

where κ̃∗ is the interface curvature made dimensionless by the lengthscale ν/U (i.e. the
lengthscale relevant to this transition region). Since for any particular liquid interface
shape the solution of (8.9) with boundary conditions (8.10) and (8.11) must give a
value of σ̃∗ij of order unity, the normal stress boundary condition (8.12) shows that the

curvature κ̃∗ is of order Ca+1. Thus the liquid interface shape must, as an expansion
in Ca, be of the form

θ = θ∗ + Caθ∗1 + . . . , (8.13)

where θ∗ is a constant (but θ∗1 a function of r̃∗).
For an advancing contact line, we see that as r∗ → ∞ in the transition sub-region,

we approach an inviscid flow situation in which we have an irrotational flow with a
boundary layer at the solid surface. This is a situation similar to that for the outer
region discussed in § 4 and we may obtain as r∗ → ∞

θ ∼ θ∗ + Ca {(g′iv(θ∗))−1 ln r∗ + . . .}. (8.14)

As r∗ → 0 in the transition sub-region we approach a viscous Stokes flow and
following an analysis similar to that for the outer region for the viscous case (see Cox
1986, equation (3.28)) we may obtain as r∗ → 0

θ ∼ θ∗ + Ca{(g′v(θ∗))−1 ln r∗ + . . .}. (8.15)

Thus, by (8.14), we see that for matching onto the inviscid sub-region we require that
as X̃ → X̃∗ from above

θ ∼ {θ∗ + (g′iv(θ
∗))−1(X̃ − X̃∗) + . . .}+ O(Ca) (8.16)

in the inviscid sub-region. Also, by (8.15) we see that in a similar manner we require
that as X̃ → X̃∗ from below

θ ∼ {θ∗ − (g′v(θ
∗))−1(X̃∗ − X̃) + . . .}+ O(Ca). (8.17)
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Since the flow in the outer region is inertia dominated, we have the same solution
there as obtained in § 3. This when matched onto the inviscid sub-region requires that
as X̃ → 0 (see (6.44))

θ ∼ {θm + (g′iv(θm))−1X̃ + . . .}+ O(Ca), (8.18)

where θm is the same macroscopic contact angle as before (defined by the relation
(6.63) for the liquid interface shape in the outer region). In the inner region where
the flow satisfies the Stokes equations, we obtain (see Cox 1986, equation (4.14)) the
interface shape for r̂ →∞ as

θ ∼ (θw + . . .) + Ca{(g′v(θw))−1 ln r̂ + Q∗v + . . .}+ . . . (8.19)

so that by matching onto the viscous sub-region we see that we require as X̃ →
−(Ca ln ε−1)

θ ∼ {θw + (g′v(θw))−1Ỹ + . . .}+ O(Ca) (8.20)

where Ỹ = X̃ + Ca ln ε−1 as in (6.51).
In the inviscid sub-region, the interface shape is that given by (6.45) which at order

Ca0 is

X̃ = giv(θ) +Kiv, (8.21)

where Kiv is a constant. Applying the boundary conditions (8.16) for X̃ → X̃∗ from
above and (8.18) for X̃ → 0 from below, we obtain

Ca ln (Re) = giv(θm)− giv(θ∗). (8.22)

Likewise in the viscous sub-region, the interface shape was obtained by Cox (1986)
(see his equation (7.10)) which at order Ca0 may be written

X̃ = gv(θ) +Kv, (8.23)

where Kv is a constant. Then by applying the boundary conditions (8.17) for X̃ → X̃∗

from below and (8.20) as X̃ → −(Ca ln ε−1) from above (or Ỹ → 0 from above), we
obtain

Ca ln (ε−1Re−1) = gv(θ
∗)− gv(θw) . (8.24)

Thus, for an advancing liquid, the macroscopic contact angle θm (defined by the
asymptotic form (6.63) of the interface in the outer region) may be obtained by first
deriving θ∗ from (8.24) or graphically from gv(θ) (shown in figure 4) in a manner
similar to that shown in figure 5 (for (7.6)) with εRe(� 1) replacing ε (as if slip length
s were replaced by sRU/ν). Then θm is obtained from (8.22) or graphically from giv(θ)
(shown in figure 5) with Re−1(� 1) replacing ε (as if slip length s were replaced by
ν/U).

While the results (8.22) and (8.24) determine the macroscopic contact angle for an
advancing contact line for Reynolds number Re in the range given by (8.1) we note
that if we substitute Re = 1 into these results, (8.22) gives θ∗ = θm with (8.24) then
giving exactly the result (7.9) for the viscous case Re� 1) examined by Cox (1986).
Likewise if we substitute Re = ε−1 into the results, (8.24) gives θ∗ = θw with (8.22)
giving exactly the result (7.6) for the inviscid case examined in §§ 2–6. Thus one may
use (7.9) for Re 6 1, (8.22) and (8.24) for 1 6 Re 6 ε−1 and (7.6) for ε−1 6 Re.

9. Discussion of results for general Reynolds number
The various results we have obtained in the previous sections for the macroscopic

contact angle for contact lines and for various ranges of Reynolds number have been
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Advancing or receding Form of interface as
contact line Range of Re r → 0 (Definition of θm) Equation for θm

Advancing Re 6 1 (6.63) (7.9)
Advancing 1 6 Re 6 ε−1 (6.59) (for r > ν/U) (8.22) & (8.24)
Advancing ε−1 6 Re (6.59) (7.6)

Table 1. Equations determining macroscopic contact angle θm.
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Figure 7. The macroscopic contact angle θm for an advancing contact line as a function of Ca for
various values of Γ for θw = 60◦ and ε = 10−6.

listed in table 1. All these results give the macroscopic contact angle θm as a function
of the microscopic contact angle θw , the capillary number Ca (� 1), the Reynolds
number Re and the slip length ratio ε (� 1). In plotting graphically the results for any
particular example it is more convenient to consider instead the macroscopic contact
angle θm as a function of θw, Ca, Γ and ε where Γ is defined as

Γ ≡ Re

Ca
≡ Rσ

µν
(9.1)

so that it is then only the parameter Ca that involves the spreading velocity U.
Note that this parameter Γ is in general small for high-viscosity fluids and large for
low-viscosity fluids.

The calculated macroscopic contact angle θm is plotted in figure 7 (for an advancing
liquid) as a function of (Ca ln ε−1) for various values of Γ for a typical example for
which θw = 60◦ and ε = 10−6. It is observed that θm increases monotonically with
increasing spreading velocity, reaching a value of 180◦ at a certain critical value of Ca
(denoted by Camax) for all cases except when Γ is very small and we have the purely
viscous situation where we have θm → 180◦ as (Ca ln ε−1)→∞. We also note, for fixed
Ca, that | θm−θw | increases as Γ decreases (i.e. for more-viscous liquids) if θm < 120◦

but a more complicated behaviour exists for θm > 120◦. The values of Camax for this
example (with θw = 60◦ and ε = 10−6), from which the maximum spreading velocity
may be determined, are plotted as a function of Γ in figure 8 (with θm = 180◦).

It was assumed in obtaining the results shown in figures 7 and 8 for the above
example that the microscopic angle had a value (60◦ for the example) which was
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Figure 8. The maximum capillary number Camax for which a solution exists plotted as a function
of Γ for an advancing contact line (corresponding to θm = 180◦).

constant independent of the spreading velocity U. There is, as pointed out by Cox
(1986), some experimental evidence to suggest that for some systems at least, the
microscopic contact angle θw is indeed a constant whose value depends only on the
particular liquid and particular solid surface involved. The experimental results of
Hoffman (1975) for silicone oils spreading on glass and of Hocking & Rivers (1982)
for molten glass spreading on platinum (for which one had a viscous situation Re� 1)
both agree with the hypothesis of θw being independent of the spreading velocity.
However should there be systems for which the microscopic contact angle θw does
depend on the spreading velocity, due perhaps to effects at the molecular scale, then
the preceding theory and also the results listed in table 1 are still valid but with
θw considered not as a constant but as a function of the spreading velocity. In fact
the viscous and inertial effects on the liquid interface shape and on the macroscopic
contact angle are always present and must always be considered (unless θw changes
with spreading velocity U due to effects at the molecular level very much more rapidly
than θm changes with U as predicted by the present analysis).

Since, due possibly to solid surface roughness or chemical heterogeneity (Johnson
& Dettre 1964; Huh & Mason 1977a; Cox 1983; Jansons 1985), the contact angle
in the static situation is, in general, not unique but can possess any value between
the static receding contact angle and the static advancing contact angle, the question
arises as to what value the microscopic contact angle θw should have if it is assumed
constant (since in the present analysis all effects of solid surface roughness and
chemical heterogeneity have been neglected). However the fact that in all our present
results the macroscopic contact angle θm tends to the microscopic contact angle θw
as the spreading velocity U tends to zero, suggests that θw should be taken as the
advancing static contact angle for an advancing contact line.

This work was supported by the Natural Sciences and Engineering Research
Council of Canada under grant A7007. Thanks are due to Ms L. Nardini for
preparing the ms. in Latex form, to Dr P. Long for preparing figures 1–6 and to Dr
J. Ferguson for undertaking the calculations that provided figures 7–9.
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